

Andreas T. Bachmeier – Meta-Automation: Automate your Automation – Sept 2025 1

Meta-Automation: Automate your Automation
How to turn natural-language into production-ready automations
with ChatGPT and n8n—fast.

1) Intro to Meta-Automation
We’re past the point where clicking through a canvas of nodes is the best way to build
automation. Visual builders are fine for a few steps, but they don’t scale with ambition.
Modern reasoning models already read docs, pick the right nodes, wire data correctly,
and even recover from errors. So instead of dragging boxes, why not just describe what
you want?

That’s the promise of meta-automation—automation that builds automation. By
connecting ChatGPT (GPT-5 Thinking) to n8n through its Model Context Protocol (MCP)
server, you can state your goal in plain English and let the model do the heavy lifting. It
proposes a minimal node graph, fills in parameters directly from n8n docs, creates or
updates the workflow, and hands you back a runnable asset—IDs, edges, and
webhooks included.

The payoff is dramatic: idea → running workflow in minutes, not hours. You can spin up
helpdesks, sales ops pipelines, data quality checks, and content factories without the
click-drag grind—while still keeping n8n’s reliability, credentials, and audit trail firmly in
your control.

2) Problem & Solution
The problem
Building complex workflows in visual builders takes far too long. Every new step means
more clicking, dragging, scrolling, and parameter hunting, which quickly becomes
exhausting as workflows grow. On top of that, knowledge about which node to use,
which field to configure, or how to set retries often gets trapped in individual heads or
scattered documentation, making it hard for teams to share or reuse. Iteration is equally
painful—small changes, version bumps, and refactors require manually reworking
graphs, which slows teams down and discourages experimentation. And while many
teams are eager to add AI-enhanced backends, they often find themselves stuck wiring
together brittle glue code instead of focusing on real value.

The big idea — meta-automation
Instead of manually piecing together workflows, imagine handing the job to a reasoning
model that acts like your automation engineer. You describe the outcome in plain
language, and the model does the rest: it plans a minimal node graph, pulls the right
parameters from documentation, assembles the workflow, and reports back with a
clear summary of connections, assumptions, and next steps.

Andreas T. Bachmeier – Meta-Automation: Automate your Automation – Sept 2025 2

The breakthrough comes when this intelligence is paired with powerful automation
platforms like n8n. The model provides the reasoning and orchestration; the platform
provides reliability, retries, credentials, and execution history. Together, they turn intent
into production-ready workflows—fast, consistent, and easy to refine.

3) What becomes possible
Meta-automation unlocks a new class of possibilities: AI-enabled workflows that can be
spun up on demand and serve as the invisible backbone of powerful applications.
Instead of wiring together nodes by hand, you can describe a goal and instantly generate
a production-ready backend.

Imagine standing up an AI helpdesk in minutes: incoming tickets are classified by the
model, enriched with CRM data, and routed automatically to Slack or Jira—complete
with summaries, SLAs, and escalation paths. Or picture a sales ops copilot that
watches a Gmail inbox, extracts order numbers, looks up details in a spreadsheet, and
posts updates into Slack so your account executives never miss a beat.

The same approach powers data quality pipelines that run on schedule, validate
warehouse data, and raise smart alerts; content factories that transform uploads into
summaries, keywords, and cross-platform posts; and knowledge refresh loops that
keep FAQ pages and vector databases up to date without manual effort.

What makes this transformative is that the workflows are AI-designed and AI-built. You
don’t just automate tasks—you automate the creation of automation itself. Combined
with reliable platforms like n8n, these automatically generated workflows become the
operational backbone for AI-driven applications and systems.

4) Solution overview & tech stack
To make meta-automation work in practice, we need a setup where the reasoning
model can both understand what’s possible and directly act on an automation platform.
This is where a few proven technologies come together.

Docker provides an easy way to run everything in isolated containers—your automation
engine, database, and supporting services—without messy local installs.
n8n acts as the core automation platform: a flexible, self-hosted engine that executes
the workflows.

The MCP server bridges the gap between the model and n8n. It exposes
documentation, node definitions, and workflow operations in a structured way so the
model can reason about them.

A Caddy proxy sits in front of the MCP server to secure the connection, inject tokens,
and ensure only well-formed requests get through.

A Cloudflare quick tunnel provides a temporary public HTTPS endpoint, so ChatGPT
can reach your local MCP server without complex network setup.

Andreas T. Bachmeier – Meta-Automation: Automate your Automation – Sept 2025 3

Together, these components form the backbone of meta-automation: Docker runs the
stack, the MCP server teaches the model what’s possible, the proxy keeps it safe, and
the tunnel makes it reachable.

General approach
1. Host n8n locally in Docker.
2. Run the n8n MCP server (Docker) to expose documentation and workflow

operations.
3. Place a Caddy proxy in front to inject a bearer token and harden the /mcp

endpoint (POST-only, JSON-only, hidden by default).
4. Open a Cloudflare quick tunnel to provide a secure, temporary HTTPS URL.
5. In ChatGPT (Developer Mode), add a custom MCP connector with that URL and

use the Master Prompt to request a workflow.
6. Iterate: the model builds or updates workflows, you test and refine.

Tools
• n8n – automation engine (self-hosted).
• n8n MCP Server – MCP API for docs + workflow operations.
• ChatGPT (GPT-5 Thinking) – plans and builds via MCP.
• Docker Desktop (Windows) – containers for everything.
• Caddy – reverse proxy + auth injection + hardening.
• Cloudflare Tunnel – public HTTPS to reach your local proxy.

Andreas T. Bachmeier – Meta-Automation: Automate your Automation – Sept 2025 4

5) Step-by-step implementation (Windows 11, Docker Desktop)
Now that the concepts and stack are clear, let’s see how everything comes together in
practice. This chapter walks through the setup process—from creating a simple local
project structure to running the full stack with Docker. We’ll prepare environment
variables, spin up the core services (Postgres, n8n, and the MCP server), secure access
with a hardened proxy, and finally expose the system through a Cloudflare tunnel so
ChatGPT can connect. The goal is to give you a clean, repeatable setup that turns your
laptop into a fully functional meta-automation lab. Here is a quick overview of the
necessary steps, which are explained in more detail in the following:

Andreas T. Bachmeier – Meta-Automation: Automate your Automation – Sept 2025 5

5.1 Create project structure
C:\n8n-local\
├─ .env # secrets (MCP token, DB pass)
├─ docker-compose.yml # n8n, Postgres, MCP
└─ caddy\
└─ Caddyfile # hardened proxy config
.env (template) — C:\n8n-local\.env

choose your own long random token (64+ hex chars recommended)
MCP_AUTH_TOKEN=REPLACE_WITH_LONG_RANDOM_TOKEN
POSTGRES_PASSWORD=n8npass

5.2 .env & Docker Compose — n8n + Postgres + n8n-MCP
Create an .env file in your folder containing all secrets (include your secrets):

Postgres (choose your own secure values)
POSTGRES_USER=n8n
POSTGRES_PASSWORD=change_me
POSTGRES_DB=n8n

n8n app config
N8N_HOST=localhost
N8N_PORT=5678
N8N_PROTOCOL=http
GENERIC_TIMEZONE=UTC

n8n basic auth (protects the UI; pick strong creds)
N8N_BASIC_AUTH_USER=admin
N8N_BASIC_AUTH_PASSWORD=change_me

Optional if exposing webhooks publicly
WEBHOOK_URL=https://your-domain.example.com/

MCP service
MCP_PORT=3000
Create an API key in n8n (Settings → API) and paste here:
N8N_API_KEY=your_n8n_api_key
Token clients must send to access MCP:
MCP_AUTH_TOKEN=change_me
Optional public URL if fronted by a tunnel/reverse proxy
MCP_PUBLIC_URL=https://mcp.example.com/

Create the docker-compose.yml file in your folder:

version: "3.9"

services:
 postgres:
 image: postgres:16-alpine
 environment:
 POSTGRES_USER: ${POSTGRES_USER}
 POSTGRES_PASSWORD: ${POSTGRES_PASSWORD}
 POSTGRES_DB: ${POSTGRES_DB:-n8n}

Andreas T. Bachmeier – Meta-Automation: Automate your Automation – Sept 2025 6

 volumes:
 - pg_data:/var/lib/postgresql/data
 healthcheck:
 test: ["CMD-SHELL", "pg_isready -U ${POSTGRES_USER}"]
 interval: 10s
 timeout: 5s
 retries: 10
 restart: unless-stopped

 n8n:
 image: n8nio/n8n:latest
 depends_on:
 postgres:
 condition: service_healthy
 environment:
 DB_TYPE: postgresdb
 DB_POSTGRESDB_HOST: postgres
 DB_POSTGRESDB_PORT: 5432
 DB_POSTGRESDB_DATABASE: ${POSTGRES_DB}
 DB_POSTGRESDB_USER: ${POSTGRES_USER}
 DB_POSTGRESDB_PASSWORD: ${POSTGRES_PASSWORD}
 N8N_HOST: ${N8N_HOST:-localhost}
 N8N_PORT: ${N8N_PORT:-5678}
 N8N_PROTOCOL: ${N8N_PROTOCOL:-http}
 GENERIC_TIMEZONE: ${GENERIC_TIMEZONE:-UTC}
 N8N_DIAGNOSTICS_ENABLED: "false"
 N8N_BASIC_AUTH_ACTIVE: "true"
 N8N_BASIC_AUTH_USER: ${N8N_BASIC_AUTH_USER}
 N8N_BASIC_AUTH_PASSWORD: ${N8N_BASIC_AUTH_PASSWORD}
 # If you expose n8n publicly, set your external URL:
 # WEBHOOK_URL: ${WEBHOOK_URL}
 ports:
 - "${N8N_PORT:-5678}:5678"
 volumes:
 - n8n_data:/home/node/.n8n
 restart: unless-stopped

 mcp:
 image: ghcr.io/czlonkowski/n8n-mcp:latest
 depends_on:
 - n8n
 environment:
 PORT: ${MCP_PORT:-3000}
 N8N_API_URL: "http://n8n:5678/api/v1"
 N8N_API_KEY: ${N8N_API_KEY}
 MCP_MODE: http
 AUTH_TOKEN: ${MCP_AUTH_TOKEN}
 # If exposing publicly, also set:
 # MCP_PUBLIC_URL: ${MCP_PUBLIC_URL}
 ports:
 - "${MCP_PORT:-3000}:3000"
 restart: unless-stopped

volumes:
 pg_data:
 n8n_data:

Start the stack

Andreas T. Bachmeier – Meta-Automation: Automate your Automation – Sept 2025 7

cd C:\n8n-local
docker compose up -d
docker ps

Quick checks:
MCP info (direct)

Invoke-WebRequest http://127.0.0.1:3000/ | Select-Object -Expand Content

n8n UI is on http://localhost:5678 (for later testing)

5.3 Hardened Caddy proxy
We’ll expose only /mcp as POST+JSON and inject the upstream bearer token so the
Connector can be configured with “No authentication” (ChatGPT currently only offers
Oauth or no authentication).

C:\n8n-local\caddy\Caddyfile

:8080 {
Hide everything by default

respond * 404

Optional: keep health reachable (or remove to hide it)

handle_path /health* {
reverse_proxy http://host.docker.internal:3000
}

Allow ONLY POST /mcp with JSON content type (accepts charset, case-insensitive)
@jsonRpc {
path /mcp
method POST
header_regexp ct Content-Type (?i)^application/json
}
route @jsonRpc {
reverse_proxy http://host.docker.internal:3000 {
header_up Authorization "Bearer REPLACE_WITH_LONG_RANDOM_TOKEN"
}
}

POST /mcp with wrong content type → 415 (useful for debugging)

@badJson {
path /mcp
method POST
}
respond @badJson 415

Block any other /mcp access

respond /mcp* 405
}

Run Caddy in Docker
docker stop caddy-mcp 2>$null
docker rm caddy-mcp 2>$null

docker run -d --name caddy-mcp `

Andreas T. Bachmeier – Meta-Automation: Automate your Automation – Sept 2025 8

-p 8080:8080 `
-v //c/n8n-local/caddy/Caddyfile:/etc/caddy/Caddyfile:ro `
--entrypoint caddy `
caddy:2 run --config /etc/caddy/Caddyfile --adapter caddyfile

docker logs caddy-mcp --tail=50

Sanity checks:
Should be 404 (hidden)

iwr http://127.0.0.1:8080/ | % StatusCode

GET /mcp should be 405 (method not allowed)

iwr http://127.0.0.1:8080/mcp

JSON POST should reach MCP (may return JSON-RPC error—that’s ok)

Invoke-RestMethod -Uri "http://127.0.0.1:8080/mcp" `
-Method POST -ContentType "application/json" `
-Body
'{"jsonrpc":"2.0","id":1,"method":"initialize","params":{"protocolVersion":"2024-
11-05","clientInfo":{"name":"check","version":"1.0.0"},"capabilities":{}}}'

Note: Manual POSTs might get 406 if your client doesn’t accept SSE; ChatGPT handles
the MCP handshake correctly.

5.4 Expose HTTPS via Cloudflare quick tunnel
ChatGPT Connectors need public HTTPS (currently local connection is not supported as
with Claude Code and Cursor).

& "C:\Program Files (x86)\cloudflared\cloudflared.exe" tunnel --url
http://127.0.0.1:8080

Copy the URL like:
https://meaningful-words.trycloudflare.com

Your MCP endpoint is:

https://meaningful-words.trycloudflare.com/mcp

Keep this PowerShell window open while using ChatGPT (closing = tunnel down). For a
stable URL, later migrate to a Named Tunnel or ngrok reserved domain.

5.5 Add the MCP connector in ChatGPT
ChatGPT → Settings → Connectors → Developer mode → Add MCP server
MCP Server URL: https://<your-trycloudflare-subdomain>.trycloudflare.com/mcp
Authentication: No authentication
Create → start a new chat → enable the connector toggle.
Each new tunnel = new URL → create a new connector (you can’t edit the URL of an
existing one).

Andreas T. Bachmeier – Meta-Automation: Automate your Automation – Sept 2025 9

6) Master Prompt
To unlock the full power of meta-automation, you need a single prompt that
consistently guides the model to build high-quality workflows. The Master Prompt acts
as your orchestration contract: it tells the model how to plan, read, build, and report
when creating or updating workflows. By following these rules, the model behaves like a
disciplined automation engineer—always consulting documentation, asking only for
what it truly needs, and returning structured outputs you can trust.
With this in place, you don’t have to reinvent instructions every time. Simply describe
your desired outcome in a few sentences, and the orchestrator handles the rest:
fetching node details, assembling the workflow, assigning IDs, and returning a clear
status block. It’s the repeatable blueprint that turns plain-language intent into
production-ready automation.

Master Prompt — n8n Meta-Automation Orchestrator

You have access to an MCP server for n8n. Always:
1) Read n8n node docs via MCP before guessing parameters.
2) Propose a minimal viable node graph (trigger → transforms/actions, error
handling).
3) Ask me ONLY for missing specifics (credential NAMES stored in n8n,
spreadsheet IDs, channel names).
4) Create or update the workflow in n8n via MCP.
5) Return a concise status block: workflow name & ID, nodes (name→type),
connections, webhook URLs, assumptions, next steps.
6) Use name prefix AUTO_ and bump versions (_v2, _v3) on updates.
7) Security: never echo secrets; only refer to n8n credential names.

I want this workflow:
[Describe your outcome in 2–5 sentences]

7) Let’s try it: Your first workflow: End-to-end run
As an example, let’s use the master prompt and this workflow: “When a Gmail message
arrives in label Orders, extract Order #12345 from the subject, look up details in Google
Sheets (Spreadsheet Shop Orders, Sheet 2025), and post a summary to Slack channel
#ops-orders.”

Andreas T. Bachmeier – Meta-Automation: Automate your Automation – Sept 2025 10

What happens in ChatGPT
In general, the model looks for tools, calls them and thinks about
the approach. In this specific case, it queries MCP docs for
Gmail/Sheets/Slack nodes, confirms required fields.
It proposes Gmail Trigger → Code (regex) → Google Sheets
(Lookup) → Slack (Post) with sensible defaults and basic error
handling.
It asks only for credential names (e.g., gmail_prod, sheets_ops,
slack_ops) and the spreadsheet ID if needed.
It creates the workflow via MCP and returns the workflow ID, node
list, and confirmation.

What we get after ChatGPT is finished

Workflow AUTO_Gmail Orders to Slack_v2 (inactive) monitors
Gmail label “Orders,” extracts the order number from the subject,
looks it up in Google Sheets (sheet “2025”), and posts a summary
to Slack; if no match, a simple alert is sent.

Open http://localhost:5678, locate the workflow (e.g.,
AUTO_Order_Summary_v1). You can now access the created
workflow:

Now

• Inspect nodes and connections.
• If there’s a webhook, copy the URL and test with a sample

payload; for Gmail, send a test email to the label.
• Review the execution history; tweak thresholds, retries, or

message formats.

Iterate
Ask ChatGPT: “Update the Slack message to include currency and
add a branch that emails finance when total > €1,000.” The model will update nodes
and connections, bumping the workflow version.

What ChatGPT needs to finish setup:

• n8n credential names for Gmail, Google Sheets, and Slack
• Google Spreadsheet ID for “Shop Orders”
• Slack destination confirmation (#ops-orders or channel ID)

Next steps: Bind credentials and IDs, optionally widen the order-ID regex (if
alphanumeric), then activate and test the workflow.

Andreas T. Bachmeier – Meta-Automation: Automate your Automation – Sept 2025 11

8) Operations: Start, stop, update
Use this PowerShell quick start to bring the local n8n + MCP stack back online after a
reboot. It starts the core Docker services from C:\n8n-local, recreates a Caddy reverse
proxy on port 8080, and opens a temporary public HTTPS endpoint via cloudflared for
the ChatGPT MCP connector (no authentication). It also includes one-liners to update
container images, tail logs, and cleanly stop everything. Prerequisites: Docker Desktop
with Compose, cloudflared installed, and a valid C:\n8n-local\caddy\Caddyfile. Run in
an elevated PowerShell window and keep the cloudflared window open while using the
public URL.

Quick start after reboot (PowerShell)
1) Start core apps

cd C:\n8n-local
docker compose up -d

2) (Re)start Caddy proxy

docker stop caddy-mcp 2>$null
docker rm caddy-mcp 2>$null
docker run -d --name caddy-mcp `
-p 8080:8080 `
-v //c/n8n-local/caddy/Caddyfile:/etc/caddy/Caddyfile:ro `
--entrypoint caddy `
caddy:2 run --config /etc/caddy/Caddyfile --adapter caddyfile

3) Open the public HTTPS URL (keep window open)

& "C:\Program Files (x86)\cloudflared\cloudflared.exe" tunnel --url
http://127.0.0.1:8080
→ use https://<random>.trycloudflare.com/mcp in the new ChatGPT connector
(No authentication)

Andreas T. Bachmeier – Meta-Automation: Automate your Automation – Sept 2025 12

Update images
cd C:\n8n-local
docker compose pull
docker compose up -d
docker pull caddy:2
docker restart caddy-mcp

Logs
docker logs -f n8n-local-mcp-1
docker logs -f caddy-mcp
Clean stop
docker compose down
docker stop caddy-mcp
docker rm caddy-mcp

close the cloudflared window

9) Security & hardening
To improve cybersecurity, lock down the MCP endpoint and its temporary tunnel. Treat
the quick-tunnel URL as a capability link and shut it down when you’re done. Configure
Caddy to accept only POST requests with Content-Type: application/json at /mcp,
returning 404/405/415 for everything else. Inject any token upstream in Caddy so
secrets never leave your machine.
For additional protection, use a secret path (for example /mcp/<slug>) or a query token;
when moving to a Named Tunnel on your own subdomain, add WAF rules, rate limits,
and geo filters. Do not place interactive OAuth in front of /mcp, because ChatGPT
Connectors can’t complete web logins.

10) Why you and your teams should adopt this
Bottom line: This approach should be adopted because it turns intent into running
automation in minutes. You describe the outcome; GPT-5 Thinking reads the n8n node
docs, assembles a minimal graph, and ships a working workflow with IDs and links—fast.
Fewer parameter mistakes, fewer retries, and a rapid chat-loop to refine. The speed
compounds: prompts become reusable patterns, the model handles the tedium, and
engineers stay focused on logic and impact. Governance stays tight—policy at the
proxy/MCP, audit in n8n—and you keep ownership of n8n, credentials, and data on your
own infrastructure.
Thanks, and have fun automating your automation!

Best, Andy

	1) Intro to Meta-Automation
	2) Problem & Solution
	Building complex workflows in visual builders takes far too long. Every new step means more clicking, dragging, scrolling, and parameter hunting, which quickly becomes exhausting as workflows grow. On top of that, knowledge about which node to use, wh...

	3) What becomes possible
	4) Solution overview & tech stack
	5) Step-by-step implementation (Windows 11, Docker Desktop)
	5.1 Create project structure
	5.2 .env & Docker Compose — n8n + Postgres + n8n-MCP
	5.3 Hardened Caddy proxy
	Sanity checks:
	5.4 Expose HTTPS via Cloudflare quick tunnel
	5.5 Add the MCP connector in ChatGPT

	6) Master Prompt
	7) Let’s try it: Your first workflow: End-to-end run
	8) Operations: Start, stop, update
	9) Security & hardening
	10) Why you and your teams should adopt this

